0
TPV: Parameter Perturbations Through the Lens of Test Prediction Variance
arXiv:2512.11089v1 Announce Type: cross
Abstract: We identify test prediction variance (TPV) -- the first-order sensitivity of model outputs to parameter perturbations around a trained solution -- as a unifying quantity that links several classical observations about generalization in deep networks. TPV is a fully label-free object whose trace form separates the geometry of the trained model from the specific perturbation mechanism, allowing a broad family of parameter perturbations like SGD noise, label noise, finite-precision noise, and other post-training perturbations to be analyzed under a single framework. Theoretically, we show that TPV estimated on the training set converges to its test-set value in the overparameterized limit, providing the first result that prediction variance under local parameter perturbations can be inferred from training inputs alone. Empirically, TPV exhibits a striking stability across datasets and architectures -- including extremely narrow networks -- and correlates well with clean test loss. Finally, we demonstrate that modeling pruning as a TPV perturbation yields a simple label-free importance measure that performs competitively with state-of-the-art pruning methods, illustrating the practical utility of TPV. Code available at github.com/devansharpit/TPV.
Abstract: We identify test prediction variance (TPV) -- the first-order sensitivity of model outputs to parameter perturbations around a trained solution -- as a unifying quantity that links several classical observations about generalization in deep networks. TPV is a fully label-free object whose trace form separates the geometry of the trained model from the specific perturbation mechanism, allowing a broad family of parameter perturbations like SGD noise, label noise, finite-precision noise, and other post-training perturbations to be analyzed under a single framework. Theoretically, we show that TPV estimated on the training set converges to its test-set value in the overparameterized limit, providing the first result that prediction variance under local parameter perturbations can be inferred from training inputs alone. Empirically, TPV exhibits a striking stability across datasets and architectures -- including extremely narrow networks -- and correlates well with clean test loss. Finally, we demonstrate that modeling pruning as a TPV perturbation yields a simple label-free importance measure that performs competitively with state-of-the-art pruning methods, illustrating the practical utility of TPV. Code available at github.com/devansharpit/TPV.
No comments yet.