0

arXiv:2512.12624v1 Announce Type: new
Abstract: Cardinality estimation (CE), the task of predicting the result size of queries is a critical component of query optimization. Accurate estimates are essential for generating efficient query execution plans. Recently, machine learning techniques have been applied to CE, broadly categorized into query-driven and data-driven approaches. Data-driven methods learn the joint distribution of data, while query-driven methods construct regression models that map query features to cardinalities. Ideally, a CE technique should strike a balance among three key factors: accuracy, efficiency, and memory footprint. However, existing state-of-the-art models often fail to achieve this balance.
To address this, we propose CoLSE, a hybrid learned approach for single-table cardinality estimation. CoLSE directly models the joint probability over queried intervals using a novel algorithm based on copula theory and integrates a lightweight neural network to correct residual estimation errors. Experimental results show that CoLSE achieves a favorable trade-off among accuracy, training time, inference latency, and model size, outperforming existing state-of-the-art methods.
Be respectful and constructive. Comments are moderated.

No comments yet.