320
Pace: Physics-Aware Attentive Temporal Convolutional Network for Battery Health Estimation
arXiv:2512.11332v1 Announce Type: new
Abstract: Batteries are critical components in modern energy systems such as electric vehicles and power grid energy storage. Effective battery health management is essential for battery system safety, cost-efficiency, and sustainability. In this paper, we propose Pace, a physics-aware attentive temporal convolutional network for battery health estimation. Pace integrates raw sensor measurements with battery physics features derived from the equivalent circuit model. We develop three battery-specific modules, including dilated temporal blocks for efficient temporal encoding, chunked attention blocks for context modeling, and a dual-head output block for fusing short- and long-term battery degradation patterns. Together, the modules enable Pace to predict battery health accurately and efficiently in various battery usage conditions. In a large public dataset, Pace performs much better than existing models, achieving an average performance improvement of 6.5 and 2.0x compared to two best-performing baseline models. We further demonstrate its practical viability with a real-time edge deployment on a Raspberry Pi. These results establish Pace as a practical and high-performance solution for battery health analytics.
Abstract: Batteries are critical components in modern energy systems such as electric vehicles and power grid energy storage. Effective battery health management is essential for battery system safety, cost-efficiency, and sustainability. In this paper, we propose Pace, a physics-aware attentive temporal convolutional network for battery health estimation. Pace integrates raw sensor measurements with battery physics features derived from the equivalent circuit model. We develop three battery-specific modules, including dilated temporal blocks for efficient temporal encoding, chunked attention blocks for context modeling, and a dual-head output block for fusing short- and long-term battery degradation patterns. Together, the modules enable Pace to predict battery health accurately and efficiently in various battery usage conditions. In a large public dataset, Pace performs much better than existing models, achieving an average performance improvement of 6.5 and 2.0x compared to two best-performing baseline models. We further demonstrate its practical viability with a real-time edge deployment on a Raspberry Pi. These results establish Pace as a practical and high-performance solution for battery health analytics.
No comments yet.