552

arXiv:2512.19243v1 Announce Type: new
Abstract: Generative models can now produce photorealistic imagery, yet they still struggle with the long, multi-goal prompts that professional designers issue. To expose this gap and better evaluate models' performance in real-world settings, we introduce Long…
420

arXiv:2512.13102v2 Announce Type: replace
Abstract: Large Language Models (LLMs) excel at static interactions, where they answer user queries by retrieving knowledge encoded in their parameters. However, in many real-world settings, such as educational tutoring or medical assistance, relevant infor…
431

arXiv:2512.19061v1 Announce Type: new
Abstract: Collaborative fraud, where multiple fraudulent accounts coordinate to exploit online payment systems, poses significant challenges due to the formation of complex network structures. Traditional detection methods that rely solely on high-confidence id…
342

arXiv:2503.07982v3 Announce Type: replace
Abstract: High-quality instance and panoptic segmentation has traditionally relied on dense instance-level annotations such as masks, boxes, or points, which are costly, inconsistent, and difficult to scale. Unsupervised and weakly-supervised approaches red…
322

arXiv:2512.18604v1 Announce Type: new
Abstract: Unmanned aerial vehicles (UAVs) have emerged as a promising auxiliary platform for smart agriculture, capable of simultaneously performing weed detection, recognition, and data collection from wireless sensors. However, trajectory planning for UAV-bas…
332

arXiv:2508.06831v2 Announce Type: replace
Abstract: Adapting person re-identification (reID) models to new target environments remains a challenging problem that is typically addressed using unsupervised domain adaptation (UDA) methods. Recent works show that when labeled data originates from sever…
333

arXiv:2512.19196v1 Announce Type: cross
Abstract: Solving high-dimensional Fokker-Planck (FP) equations is a challenge in computational physics and stochastic dynamics, due to the curse of dimensionality (CoD) and the bottleneck of evaluating second-order diffusion terms. Existing deep learning app…
332

Last week a request for comments (RFC) was issued around establishing an LLVM AI Tool Use Policy. The proposed policy would allow AI-assisted contributions to be made to this open-source compiler codebase but that there would need to be a "human in the loop" and the contributor versed enough to be a…
333

arXiv:2512.19522v1 Announce Type: new
Abstract: Recent advances in neural rendering have achieved impressive results on photorealistic shading and relighting, by using a multilayer perceptron (MLP) as a regression model to learn the rendering equation from a real-world dataset. Such methods show pr…
320

arXiv:2512.18073v1 Announce Type: new
Abstract: Multimodal LLMs (MLLMs) have gained significant traction in complex data analysis, visual question answering, generation, and reasoning. Recently, they have been used for analyzing the biometric utility of iris and face images. However, their capabili…
321

arXiv:2508.01171v2 Announce Type: replace
Abstract: We introduce SPFSplat, an efficient framework for 3D Gaussian splatting from sparse multi-view images, requiring no ground-truth poses during training or inference. It employs a shared feature extraction backbone, enabling simultaneous prediction …
324

arXiv:2512.18586v1 Announce Type: new
Abstract: Spectral bias implies an imbalance in training dynamics, whereby high-frequency components may converge substantially more slowly than low-frequency ones. To alleviate this issue, we propose a cross-attention-based architecture that adaptively reweigh…
321

arXiv:2505.17196v3 Announce Type: replace
Abstract: Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks: even a few harmful examples can compromise safety alignment. A common mitigation strategy is to update the model more strongly on exa…
222

arXiv:2511.00066v2 Announce Type: replace
Abstract: Reinforcement learning with verifiable rewards (RLVR) has become a practical route to improve large language model reasoning, and Group Relative Policy Optimization (GRPO) is a widely used optimizer in this setting. This paper revisits GRPO from a…
219

arXiv:2505.15925v3 Announce Type: replace
Abstract: While autonomous driving (AD) stacks struggle with decision making under partial observability and real-world complexity, human drivers are capable of commonsense reasoning to make near-optimal decisions with limited information. Recent work has a…
222

arXiv:2512.19651v1 Announce Type: new
Abstract: Aspect-Category Sentiment Analysis (ACSA) provides granular insights by identifying specific themes within reviews and their associated sentiment. While supervised learning approaches dominate this field, the scarcity and high cost of annotated data f…