0
Secure AI-Driven Super-Resolution for Real-Time Mixed Reality Applications
arXiv:2512.15823v1 Announce Type: new
Abstract: Immersive formats such as 360{\deg} and 6DoF point cloud videos require high bandwidth and low latency, posing challenges for real-time AR/VR streaming. This work focuses on reducing bandwidth consumption and encryption/decryption delay, two key contributors to overall latency. We design a system that downsamples point cloud content at the origin server and applies partial encryption. At the client, the content is decrypted and upscaled using an ML-based super-resolution model. Our evaluation demonstrates a nearly linear reduction in bandwidth/latency, and encryption/decryption overhead with lower downsampling resolutions, while the super-resolution model effectively reconstructs the original full-resolution point clouds with minimal error and modest inference time.
Abstract: Immersive formats such as 360{\deg} and 6DoF point cloud videos require high bandwidth and low latency, posing challenges for real-time AR/VR streaming. This work focuses on reducing bandwidth consumption and encryption/decryption delay, two key contributors to overall latency. We design a system that downsamples point cloud content at the origin server and applies partial encryption. At the client, the content is decrypted and upscaled using an ML-based super-resolution model. Our evaluation demonstrates a nearly linear reduction in bandwidth/latency, and encryption/decryption overhead with lower downsampling resolutions, while the super-resolution model effectively reconstructs the original full-resolution point clouds with minimal error and modest inference time.