109
REAL: Representation Enhanced Analytic Learning for Exemplar-free Class-incremental Learning
arXiv:2403.13522v3 Announce Type: replace
Abstract: Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning (CIL) without available historical training samples as exemplars. Compared with its exemplar-based CIL counterpart that stores exemplars, EFCIL suffers more from forgetting issues. Recently, a new EFCIL branch named Analytic Continual Learning (ACL) introduces a gradient-free paradigm via Recursive Least-Square, achieving a forgetting-resistant classifier training with a frozen backbone during CIL. However, existing ACL suffers from ineffective representations and insufficient utilization of backbone knowledge. In this paper, we propose a representation-enhanced analytic learning (REAL) to address these problems. To enhance the representation, REAL constructs a dual-stream base pretraining followed by representation enhancing distillation process. The dual-stream base pretraining combines self-supervised contrastive learning for general features and supervised learning for class-specific knowledge, followed by the representation enhancing distillation to merge both streams, enhancing representations for subsequent CIL paradigm. To utilize more knowledge from the backbone, REAL presents a feature fusion buffer to multi-layer backbone features, providing informative features for the subsequent classifier training. Our method can be incorporated into existing ACL techniques and provides more competitive performance. Empirical results demonstrate that, REAL achieves state-of-the-art performance on CIFAR-100, ImageNet-100 and ImageNet-1k benchmarks, outperforming exemplar-free methods and rivaling exemplar-based approaches.
Abstract: Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning (CIL) without available historical training samples as exemplars. Compared with its exemplar-based CIL counterpart that stores exemplars, EFCIL suffers more from forgetting issues. Recently, a new EFCIL branch named Analytic Continual Learning (ACL) introduces a gradient-free paradigm via Recursive Least-Square, achieving a forgetting-resistant classifier training with a frozen backbone during CIL. However, existing ACL suffers from ineffective representations and insufficient utilization of backbone knowledge. In this paper, we propose a representation-enhanced analytic learning (REAL) to address these problems. To enhance the representation, REAL constructs a dual-stream base pretraining followed by representation enhancing distillation process. The dual-stream base pretraining combines self-supervised contrastive learning for general features and supervised learning for class-specific knowledge, followed by the representation enhancing distillation to merge both streams, enhancing representations for subsequent CIL paradigm. To utilize more knowledge from the backbone, REAL presents a feature fusion buffer to multi-layer backbone features, providing informative features for the subsequent classifier training. Our method can be incorporated into existing ACL techniques and provides more competitive performance. Empirical results demonstrate that, REAL achieves state-of-the-art performance on CIFAR-100, ImageNet-100 and ImageNet-1k benchmarks, outperforming exemplar-free methods and rivaling exemplar-based approaches.