200
Primer C-VAE: An interpretable deep learning primer design method to detect emerging virus variants
arXiv:2503.01459v2 Announce Type: replace-cross
Abstract: Motivation: PCR is more economical and quicker than Next Generation Sequencing for detecting target organisms, with primer design being a critical step. In epidemiology with rapidly mutating viruses, designing effective primers is challenging. Traditional methods require substantial manual intervention and struggle to ensure effective primer design across different strains. For organisms with large, similar genomes like Escherichia coli and Shigella flexneri, differentiating between species is also difficult but crucial.
Results: We developed Primer C-VAE, a model based on a Variational Auto-Encoder framework with Convolutional Neural Networks to identify variants and generate specific primers. Using SARS-CoV-2, our model classified variants (alpha, beta, gamma, delta, omicron) with 98% accuracy and generated variant-specific primers. These primers appeared with >95% frequency in target variants and
Abstract: Motivation: PCR is more economical and quicker than Next Generation Sequencing for detecting target organisms, with primer design being a critical step. In epidemiology with rapidly mutating viruses, designing effective primers is challenging. Traditional methods require substantial manual intervention and struggle to ensure effective primer design across different strains. For organisms with large, similar genomes like Escherichia coli and Shigella flexneri, differentiating between species is also difficult but crucial.
Results: We developed Primer C-VAE, a model based on a Variational Auto-Encoder framework with Convolutional Neural Networks to identify variants and generate specific primers. Using SARS-CoV-2, our model classified variants (alpha, beta, gamma, delta, omicron) with 98% accuracy and generated variant-specific primers. These primers appeared with >95% frequency in target variants and