210

arXiv:2508.01031v4 Announce Type: replace
Abstract: Computer Aided Design (CAD) plays a pivotal role in industrial manufacturing but typically requires a high level of expertise from designers. To lower the entry barrier and improve design efficiency, we present an agent for CAD conceptual design powered by large language models (LLMs). The agent accepts both textual descriptions and sketches as input, engaging in interactive dialogue with users to refine and clarify design requirements through comprehensive requirement analysis. Built upon a novel Explicit Context Imperative Paradigm (ECIP), the agent generates high-quality CAD modeling code. During the generation process, the agent incorporates iterative visual feedback to improve model quality. Generated design cases are stored in a structured knowledge base, enabling continuous improvement of the agent's code generation capabilities. Experimental results demonstrate that our method achieves state-of-the-art performance in CAD code generation.