0

arXiv:2512.11871v1 Announce Type: new
Abstract: Agriculture supports over 80% of the population in the Tigray region of Ethiopia, where infrastructural disruptions limit access to expert crop disease diagnosis. We present an offline-first detection system centered on a newly curated indigenous cactus-fig (Opuntia ficus-indica) dataset consisting of 3,587 field images across three core symptom classes. Given deployment constraints in post-conflict edge environments, we benchmark three mobile-efficient architectures: a custom lightweight CNN, EfficientNet-Lite1, and the CNN-Transformer hybrid MobileViT-XS. While the broader system contains independent modules for potato, apple, and corn, this study isolates cactus-fig model performance to evaluate attention sensitivity and inductive bias transfer on indigenous morphology alone. Results establish a clear Pareto trade-off: EfficientNet-Lite1 achieves 90.7% test accuracy, the lightweight CNN reaches 89.5% with the most favorable deployment profile (42 ms inference latency, 4.8 MB model size), and MobileViT-XS delivers 97.3% mean cross-validation accuracy, demonstrating that MHSA-based global reasoning disambiguates pest clusters from two dimensional fungal lesions more reliably than local texture CNN kernels. The ARM compatible models are deployed in a Tigrigna and Amharic localized Flutter application supporting fully offline inference on Cortex-A53 class devices, strengthening inclusivity for food security critical diagnostics.